Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 644: 123324, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37591475

RESUMO

Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages. Flubendazole nanocrystals were obtained through nanoprecipitation, and dry powder was produced by spray drying. Through fractional factorial design, the spray drying parameters were optimized and the impact of formulation on aerolization properties was clarified. The loading limitations were clarified through response surface methodology, and a 15% flubendazole loading was feasible through the addition of 20% L-leucine, leading to a flubendazole particle size of 388.6 nm, median mass aerodynamic diameter of 2.9 µm, 50.3% FPF, emitted dose of 83.2% and triple the initial solubility. Although the cytotoxicity of this formulation in A549 cells was limited, the formulation showed a synergistic effect when associated with paclitaxel, leading to a surprising 1000-fold reduction in the IC50. Compared to 3 cycles of paclitaxel alone, a 3-cycle model combined treatment increased the threshold of cytotoxicity by 25% for the same dose. Our study suggests, for the first time, that orally inhaled flubendazole nanocrystals show high potential as adjuvants to increase cytotoxic agents' potency and reduce adverse effects.


Assuntos
Adjuvantes Imunológicos , Nanopartículas , Pós , Adjuvantes Farmacêuticos , Paclitaxel/farmacologia
2.
J Pharm Sci ; 111(11): 3054-3063, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35760122

RESUMO

Flubendazole (FBZ) is a poorly water-soluble drug, and different methodologies have been proposed to improve its oral bioavailability. Obtaining the amorphous drug phase is an alternative to improve its water solubility. Several techniques for drug amorphization, such as spray drying, lyophilization, melt quenching, solvent-evaporation, and ball milling, can yield various types of structural disorder and possibly render variations in physicochemical properties. Herein, we focus on evaluating the influence of the ball-milling process on the amorphization of FBZ. The characterization of the average global and local structures before, during, and after the milling process is described by sequential Rietveld refinements, pair distribution function analysis, and the Reverse Monte Carlo method. We show that preserving the local structure (nearest molecules) can be responsible for avoiding the fast structure recrystallization commonly observed when using the solvent-evaporation process for the studied drug.


Assuntos
Água , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Mebendazol/análogos & derivados , Difração de Pó , Pós , Solubilidade , Solventes , Água/química , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...